منابع مشابه
Maximum rank matrix completion
The maximum rank completion problem is the problem of, given a partial matrix (that is, a matrix where we are only given some of the entries), ll in the unknown entries in such a way as to maximize the rank. Applications include bipartite matching and matroid intersection for linearly represented matroids. We describe an algorithm that nds a maximum rank completion by perturbing an arbitrary co...
متن کاملHigh-Rank Matrix Completion
This paper considers the problem of completing a matrix with many missing entries under the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces. This generalizes the standard low-rank matrix completion problem to situations in which the matrix rank can be quite high or even full rank. Since the columns belong to a union of subspaces, this problem may also ...
متن کاملLow-Rank Matrix Completion
While datasets are frequently represented as matrices, real-word data is imperfect and entries are often missing. In many cases, the data are very sparse and the matrix must be filled in before any subsequent work can be done. This optimization problem, known as matrix completion, can be made well-defined by assuming the matrix to be low rank. The resulting rank-minimization problem is NP-hard,...
متن کاملRank-One Matrix Pursuit for Matrix Completion
Low rank matrix completion has been applied successfully in a wide range of machine learning applications, such as collaborative filtering, image inpainting and Microarray data imputation. However, many existing algorithms are not scalable to large-scale problems, as they involve computing singular value decomposition. In this paper, we present an efficient and scalable algorithm for matrix com...
متن کاملOrthogonal Rank-One Matrix Pursuit for Low Rank Matrix Completion
In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to reduce the time and storage complexity. Both versions are computationally inexpensive for each matrix ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1999
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(98)10210-0